All explanations above are right. However there can be a confusion when looking at what is really displayed by the NanoVNA.
REAL and IMAG parameters are not the samething as RESISTANCE and REACTANCE parameters. REAL and IMAG apply to reflection coefficient ¦£, in its complex form (a+j.b). That's why values are always in the [-1,1] interval, without any associated unit. When REAL=-1 and IMAG=0, it is the Short circuit situation. When REAL=1 and IMAG=0, it is the Open circuit situation. When REAL=0 and IMAG=0, it is the normal Loaded (50 ohms) situation.
LINEAR is the ¦£ modulus form of combined REAL and IMAG values, and finally POLAR is the geometric representation of REAL, IMAG and PHASE values. When POLAR is displayed by the NanoVNA, and even if data values are exactly displayed as for Smith Chart, results must not be read in the same way. Have a try by displaying two CH0 traces, POLAR and SMITH.
SWR and LOGMAG (Return Loss) are derivated from ¦£ modulus (LINEAR). For educational purposes I have created an ods file (see below), showing and calculating NanoVNA parameters. You can play with it by entering values in the blue fields, and also checking what are the arithmetic relations behind the different results. Here Group Delay is not relevant as calculations are done for a discrete (CW) frequency.
A last word about the use of REAL and IMAG parameters. The following case (see attachment) is an opened coaxial cable (length 2 meters), creating a quarter wave stub (at red marker). An opened coaxial cable remains a good use case for education and increase of knowledge. On the NanoVNAsaver snapshot we see clearly that displayed values between RESISTANCE/REACTANCE and REAL/IMAG do not allow an immediate comparison. For example at red marker, R+jX or Smith Chart highlight a value of 0+j0 ohms (short circuit situation), and checking this with REAL/IMAG chart you get -1 (REAL) and 0 (IMAG) which is the same thing. Be careful with REAL and IMAG curves which follow sinus and cosinus rules, it reflects simply a monotonous variation of PHASE.
REAL is also interesting if you want to measure a coaxial cable length, thanks to advanced TDR function.
Sorry for possible english language mistakes.
73 from Jean-Roger / F6EGK