That's a very curious result that I didn't see coming.
toggle quoted message
Show quoted text
Well worth figuring out. Here's a python script to demonstrate what Roger says. I chose L and C at random to be 1uH and 200pF. Though I still don't fully understand it. ############################################################# from math import pi, sqrt L=1e-6; C=200e-12; # 1uH, 200pF R = sqrt(L/C) # 70.71 ohms rfreq=1/(2*pi*sqrt(L*C)) # expected resonant freq is 11.254mhz for n in range(7): freq = rfreq + (n-3)*1e6 ZL=2j*pi*freq*L ZC= 1/(2j*pi*freq*C) ZTOT = (ZL+R)*(ZC+R)/((ZL+R)+(ZC+R)) print ("mhz:", freq/1e6, "ZL:", ZL, "ZC:", ZC, "R:", R, "ZTOT:", ZTOT) #################################################################### Prints the result below. Note that all the ZTOT impedances are 70.71 ohms plus a wee bit of rounding error in the j part The expected resonant frequency is the middle line, at 11.25 mhz. mhz: 8.253953951963828 ZL: 51.86112219711599j ZC: -96.4113345059481j R: 70.71067811865476 ZTOT: (70.71067811865474+0j) mhz: 9.253953951963828 ZL: 58.14430750429558j ZC: -85.99294091911938j R: 70.71067811865476 ZTOT: (70.71067811865476+3.0955136352074205e-15j) mhz: 10.253953951963828 ZL: 64.42749281147518j ZC: -77.60662074234014j R: 70.71067811865476 ZTOT: (70.71067811865476+3.984830550267833e-15j) mhz: 11.253953951963828 ZL: 70.71067811865476j ZC: -70.71067811865474j R: 70.71067811865476 ZTOT: (70.71067811865476-6.743286468322594e-16j) mhz: 12.253953951963828 ZL: 76.99386342583433j ZC: -64.94024039742253j R: 70.71067811865476 ZTOT: (70.71067811865476+2.3942688709030205e-15j) mhz: 13.253953951963828 ZL: 83.27704873301393j ZC: -60.0405523018712j R: 70.71067811865476 ZTOT: (70.71067811865474-1.5655109872331959e-15j) mhz: 14.253953951963828 ZL: 89.5602340401935j ZC: -55.82834897188927j R: 70.71067811865476 ZTOT: (70.71067811865476+3.042457833625405e-15j) """ Jerry, KE7ER On Tue, Sep 8, 2020 at 11:31 AM, Roger Need wrote:
|