Solution (works with Scilab-5.5.2 under Windows ; does not work with Scilab 6.1.0 under Linux):
Here is my source code for Scilab:
// conic function
function [z]=fct(x,y)
z=-0.04088*x^2-0.10063*y^2-0.21767*x+0.44632*y+0.04286*x*y
endfunction
// plane surface z=0
function [z]=f(x,y)
z=0*x*y
endfunction
// working space
x=-10:10;y=-10:10;
// we draw the 2d ellipse from the conic function where z=0
fcontour2d(x,y,fct,[0,0],style=[9,9])
// we write a function to find the intersection between the conic and the place surface
function [Y]=coniques(X) , Y=[fct(X(1),X(2)),f(X(1),X(2))] endfunction
for i=-10:0.1:10 // for each offset off the y axis (with i from -10 to 10 with a step of 0.1)
rep=fsolve([-10,i],coniques); // we find the coordinates (rep(1)=x, rep(2)=y) of the first point of intersection (search from the left to the right)
xpolys(rep(1),rep(2),-1) // we plot the point on the chart
rep=fsolve([10,i],coniques); // we find the coordinates (rep(1)=x, rep(2)=y) of the second point of intersection (search from the right to the left)
xpolys(rep(1),rep(2),-1) // we plot the point on the chart
end